Log in

Login to your account

Username *
Password *
Remember Me

Multi Radiance Medical Logo

Call or Contact us today for more information: 1.440.542.0761 Refer a Friend
LLLT vs UltraSound

Collagen changes and realignment induced by low-level laser therapy and low-intensity ultrasound in the calcaneal tendon

Wood VT, Pinfildi CE, Neves MA, Parizoto NA, Hochman B, Ferreira LM.
Lasers Surg Med. 2010 Aug;42(6):559-65.

BACKGROUND AND OBJECTIVE: The treatment of calcaneal tendon injuries requires long-term rehabilitation. Ultrasound (US) and low-level laser therapy (LLLT) are the most used and studied physical agents in the treatment of tendon injuries; however, only a few studies examined the effects of the combination of US and LLLT. Therefore, the purpose of this study was to investigate which treatment (the exclusive or combined use of US and LLLT) most effectively contribute to tendon healing.

STUDY DESIGN/MATERIALS AND METHODS: This was a controlled laboratory study with 50 rats whose Achilles tendon was injured by direct trauma. The rats were randomly divided into five groups and treated for 5 consecutive days, as follows: group 1 (control) received no treatment; group 2 was treated with US alone; group 3 was treated with LLLT alone; group 4 was treated first with US followed by LLLT; and group 5 was treated first with LLLT followed by US. On the sixth post-injury day, the tendons were removed and examined by polarized light microscopy. The organization of collagen fibers was assessed by birefringence measurements. Picrosirius-stained sections were examined for the presence of types I and III collagen.

RESULTS: There was a significantly higher organization of collagen fibers in group 2 (US) than in the control group (P = 0.03). The amount of type I collagen found in groups 2 (US), 3 (LLLT), and 5 (LLLT + US) was significantly higher than that in the control group (P < or = 0.01), but no significant differences were found between treatment groups. There were no differences in the amount of type III collagen between groups.

CONCLUSION: Ultrasound, LLLT, and the combined use of LLLT and US resulted in greater synthesis of type I collagen; US was also effective in increasing collagen organization in the early stages of the healing process.

The effectiveness of conservative treatments of carpal tunnel syndrome: splinting, ultrasound, and low-level laser therapies

Dincer U, Cakar E, Kiralp MZ, Kilac H, Dursun H.
Photomed Laser Surg. 2009 Feb;27(1):119-25.

OBJECTIVE: The objective of this study was to investigate the effectiveness of splinting, ultrasound (US), and low-level laser (LLL) in the management of carpal tunnel syndrome (CTS).
BACKGROUND DATA: CTS is the entrapment mononeuropathy most frequently seen in clinical practice, caused by compression of the median nerve at the wrist. Although several treatment modalities are routinely in use, there is no consensus about the best way to manage CTS.

MATERIALS AND METHODS: In our study, patients were randomly allocated to three groups that received the following treatment protocols: splinting only, splinting plus US, and splinting plus LLL therapy. Patients were assessed with the Boston Questionnaire, patient satisfaction inquiry, visual analogue scale for pain, and electroneuromyography.

RESULTS AND CONCLUSION: The study was completed with a total of 100 hands of 50 women patients with bilateral CTS at 3 mo after treatment. At the end of the follow-up period, each of the groups had improvements to varying degrees. It appeared that the combinations of US or LLL therapy with splinting were more effective than splinting alone in treating CTS. However, LLL therapy plus splinting was more advantageous than US therapy plus splinting, especially for the outcomes of lessening of symptom severity, pain alleviation, and increased patient satisfaction.

Fibroblast Cells Subjected to Low-Level Laser Therapy and Low-Intensity Pulsed Ultrasound

Deise A.A. Pires Oliveira, Rodrigo Franco De Oliveira, Márcio Magini, Renato Amaro Zangaro, Cristina Pacheco Soares.
Photomedicine and Laser Surgery. June 2009, 27(3): 461-466. doi:10.1089/pho.2008.2290.

Objective: The aim of the present study was to compare the effect of low-level laser therapy (LLLT) and low-intensity pulsed ultrasound (LIPUS) on the cytoskeleton and endoplasmic reticulum of L929 cells. Thermal and non-thermal physical mechanisms such as LLLT and LIPUS induce clinically significant responses in cells, tissues, and organs.

Materials and Methods: L929 fibroblast cell cultures were irradiated with LLLT and subjected to LIPUS. Cultures irradiated with the laser (904nm) were divided into three groups: group I, control (no irradiation); group II, irradiated at 6J/cm2; and group III, irradiated at 50mJ/cm2. Cultures subjected to ultrasound were divided into five groups: group I, control (no LIPUS); group II, LIPUS at 0.2W/cm2 in pulsed mode at 10% (1:9 duty cycle); group III, LIPUS at 0.6W/cm2 in pulsed mode at 10% (1:9 duty cycle); group IV, LIPUS at 0.2W/cm2 in pulsed mode at 20% (2:8 duty cycle); and group V, LIPUS at 0.6W/cm2 in pulsed mode at 20% (2:8 duty cycle). Each group was irradiated at 24-h intervals, with the following post-treatment incubation times: 24, 48, and 72h. The effects of LLLT and LIPUS on the cytoskeleton and endoplasmic reticulum was evaluated by the use of fluorescent probes and with fluorescence microscopy analysis.

Results: The results following LLLT and LIPUS demonstrate that ultrasound was more effective than laser on fibroblast cell cultures when the endoplasmic reticulum was assessed, whereas there was a better distribution of the filaments of the cytoskeleton in the cells subjected to laser irradiation. Conclusion: The study demonstrated that both LLLT and LIPUS promote changes on the cellular level. However, LIPUS was more effective than LLLT at the doses used here, as assessed by fluorescence microscopy, which revealed increased reticulum activity and increased protein synthesis. However, when the organization of actin filaments was assessed, LLLT achieved a better result.

Comparison between the effect of low-level laser therapy and low-intensity pulsed ultrasonic irradiation in vitro

De Oliveira RF, Oliveira DA, Monteiro W, Zangaro RA, Magini M, Soares CP.
Photomed Laser Surg. 2008 Feb;26(1):6-9.

OBJECTIVE: The objective of this study was to compare the effect of low-level laser therapy (LLLT) and low-intensity pulsed ultrasound (LIPUS) on fibroblast cell culture. Several methods, including ultrasound treatment and LLLT, are being used to facilitate tissue repair and healing processes.

MATERIALS AND METHODS: L929 fibroblast cell cultures were irradiated with low-level laser energy and LIPUS. Cultures irradiated with ultrasound were divided into five groups: group 1: control (did not receive irradiation); group 2: 0.2 W/cm(2) in pulsed mode at 10% (1:9 duty cycle); group 3: 0.6 W/cm(2) in pulsed mode at 10% (1:9 duty cycle); group 4: 0.2 W/cm(2) in pulsed mode at 20% (2:8 duty cycle); and group 5: 0.6 W/cm(2) in pulsed mode at 20% (2:8 duty cycle). Cultures irradiated with laser energy were divided into three groups: group 1: control (did not receive irradiation); group 2: 6 J/cm(2); and group 3: 50 mJ/cm(2). Each group was irradiated at 24-h intervals, with the following incubation periods post-irradiation: 24, 48, and 72 h; after each irradiation cycle the cultures were analyzed using MTT [3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide].

RESULTS: Analysis of results after LLLT and LIPUS demonstrated that the effect of laser therapy on fibroblast cell culture was greater than that of LIPUS (p < 0.05).

CONCLUSION: Results demonstrated that LLLT significantly increased fibroblastic activity more than LIPUS. Therefore, in the first and second phases of tissue repair, laser treatment may be more effective than ultrasound treatment.

Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats

Fávaro-Pípi E, Feitosa SM, Ribeiro DA, Bossini P, Oliveira P, Parizotto NA, Renno AC.
Lasers Med Sci. 2010 Sep;25(5):727-32. Epub 2010 Jun 3.

The aim of this study was to investigate and to compare the effects of low intensity ultra-sound (LIPUS) and low-level laser therapy (LLLT) during the process of bone healing by means of histopathological and morphometric analysis. The animals were randomly distributed into three groups of 30 animals each: the control group (bone defect without treatment); the laser-treated group: (bone defect treated with laser), and the LIPUS-treated (bone defect treated with ultrasound). Each group was further divided into three different subgroups (n = 10) and on days 7, 13, and 25 post-injury, rats were killed with an intra-peritoneal injection of general anesthetic. The rats were treated with a 30-mW/cm(2) low-intensity pulsed ultrasound and a 830-nm laser at 50 J/cm(2). The results showed intense new bone formation surrounded by highly vascularized connective tissue presenting a slight osteogenic activity, with primary bone deposition being observed in the group exposed to laser in the intermediary (13 days) and late stages of repair (25 days). This was confirmed by morphometric analysis in which significant statistical differences (p < 0.05) were noticed when compared to the control. No remarkable differences were noticed in the specimens treated with ultrasound with regard to the amount of newly formed bone in comparison to the control group. Taken together, our results indicate that laser therapy improves bone repair in rats as depicted by histopathological and morphometric analysis, mainly at the late stages of recovery. Moreover, it seems that this therapy was more effective than US to accelerate bone healing.

Request a Demo
Name (*)

Invalid Input
Email (*)

Invalid Input
Phone

Invalid Input



Upcoming Events

No events

Newsletter

Subscribe to our newsletter below and keep up with our latest news and events

This website contains information that has not been reviewed or approved by the FDA. Some of the claims and representations of the products contained on this site are cleared by regional regulatory bodies such as CE and Health Canada and may differ from those that are FDA 510K cleared.
What does this mean?